GUJARAT TECHNOLOGICAL UNIVERSITY BACHELOR OF PHARMACY Semester: VII

Subject Name: Pharmaceutical Analysis III Subject Code: 270004

[THEORY]

Sr. No	Course Content	Total Hrs.
1.	Fundamentals of Spectroscopy:	03
	Classification of spectra i.e. line, band, continuous spectra / absorption, emission spectra; Wave properties of electromagnetic radiation; Particle/photon properties of electromagnetic spectrum.	
2.	UV-VIS spectroscopy:	10
	Theory; Beer and Lambert's law - limitations and deviations from the law; Terminologies associated with absorption measurements; Types of transitions; Factors affecting spectral characteristics (structural and nonstructural); Effect of conjugation; Wood ward Fieser rule; Photometric titrations; Instrumentation, applications (in analysis of organic compounds and inorganic complexes), advantages and limitations of UV Visible spectroscopy; Quantitative analysis of binary mixtures of absorbing substances by simultaneous equation method; Calibration of UV Visible Spectrophotometer as per Pharmacopoeia.	
3.	Fluorescence spectroscopy:	04
	Introduction: luminescence, photoluminescence; Theory of Fluorescence and Phosphorescence; Jablonski diagram; Factors affecting fluorescence intensity (structural and nonstructural); Instrumentation, applications, advantages and limitations of fluorescence spectroscopy.	
4.	IR spectroscopy:	07
	Theory of absorption of Infrared radiation by molecules; Molecular vibrations; Factors influencing vibrational frequencies; Calculation of vibrational frequencies (Hooke's law); Sample handling techniques; Instrumentation (Dispersion and FTIR spectrometer) and applications of IR Spectroscopy; Calibration of IR Spectrophotometer as per Pharmacopoeia.	
5.	Atomic spectroscopy:	05
	Basics of atomic spectroscopy; Principle of atomic absorption and atomic emission spectroscopy; Interferences in atomic spectroscopy; Factors affecting atomic spectroscopy like solvents, buffers, other ions, etc; Flame Photometry; Atomic emission spectroscopy with plasma and electrical discharge sources; Instrumentation (including radiation sources like hollow cathode lamp), applications, advantages and limitations of atomic absorption and atomic emission spectroscopy.	

6.	Mass spectrometry:	06
	Theory; Ionization techniques, Ion separating techniques; Different types of ions and their significance in mass spectra, Fragmentation rules and rearrangements; Instrumentation and applications of mass spectrometry.	
7.	Nuclear Magnetic Resonance spectroscopy:	07
	Fundamental Principles - nuclear spin, magnetic moment; Proton NMR spectroscopy - theory, chemical shift and factors affecting chemical shift, spin-spin coupling, coupling constant, relaxation process, Instrumentation and applications of PMR; Brief overview of C13 NMR.	
8.	Structure elucidation by joint application of UV, IR, NMR and Mass spectrometry	03

Note:

Examples based on assays & structure elucidation shall be covered at concerned subtopics in each of the above chapters.

[PRACTICAL]

Note:

Following Experiments shall include different dosage forms & pharmacopoeial testing from different pharmacopoeias, wherever applicable.

Calibration of UV, IR spectrophotometer.
Determination of λ_{max} , A(_{1cm} ^{1%}), Detection-Quantitation Limit and preparation of calibration
curve (Verification of Beer's law) for any drug by UV-visible spectrophotometer.
Determination of the dissociation constant of indicator/ stability constant of complex (e.g. Ferric
salicylate) using UV/visible - spectrophotometric method.
Determination of isosbestic point/pKa of indicator (e.g. Phenol red)
Two experiments on Spectrophotometric estimation of drugs in marketed formulations (e.g.
Paracetamol/Ibuprofen/sulphadiazine).
Simultaneous estimation of Paracetamol & Ibuprofen/any other combination.
Two experiments- Fluorimetric estimation of drug (quinine sulphate/ riboflavin/Thiamine).
Flame photometric estimation of sodium/potassium ions in urine/ORS.
Two experiments: Colorimetric assay of colored drug (e.g. Vitamin B ₂) & non-colored drug (e.g.
Sulpha-BMR, Nitration of Paracetamol)
Identification of API by IR spectrum.
Content Uniformity of any drug as per Pharmacopoeia.
Identification using λ_{max} , A(_{1cm} ^{1%}), λ_{min} , \in & absorption ratio as per pharmacopoeia.
Workshop on structure elucidation of simple organic compounds using UV, IR, NMR, and Mass
spectra.

Text Books:

- 1. Principles of Instrumental Analysis by skoog, holler, Nieman, 5th edition.
- 2. Instrumental methods of Analysis, H.H. Willard, L.L. Meritt, J.A. Dean and F.A. Settle Wadsworath, New York

Reference Books:

- 1. Pharmaceutical Analysis: Modern methods Part A, Part B, James W. Munson.
- 2. G. H. Jeffery, J. Basset, J. Mendham, R. C. Denny (Rev. by) Vogel's Text Book of Quantitative Chemical Analysis, Longman, London
- 3. A Textbook of Pharmaceutical Analysis. Connors K.A.
- 4. A.H. Beckett and J.B. Stenlake, Practical Pharmaceutical chemistry, part 1&2, the athlone press, London.
- 5. Pharmacopoeia of India, Govt. of India, Ministry of Health.
- 6. British Pharmacopoeia, ministry of health and social welfare, UK.
- 7. The United States Pharmacopeia–National Formulary (USP–NF)